Reactions of dirhenium heptoxide with manganese(I) and rhenium(I) hydrido, alkoxo, methylcarbonato, carbonato-bridged, and methoxymethyl complexes. The X-ray structures of fac$(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{MnOReO}_{3}$ and $f a c-(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{ReOReO}_{3}$

Damon A. Brown ${ }^{\text {a }}$, David M. Kimari ${ }^{\text {a }}$, Anna M. Duzs-Moore ${ }^{\text {a }}$, Theodore A. Budzichowski ${ }^{\text {b }}$, Douglas M. Ho ${ }^{\text {c }}$, Santosh K. Mandal ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Chemistry, Morgan State University, Baltimore, MD 21251, USA
${ }^{\mathrm{b}}$ Department of Chemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
${ }^{\text {c }}$ Department of Chemistry, Princeton University, Princeton, NJ 08544, USA

Received 11 January 2002; received in revised form 31 May 2002; accepted 31 May 2002

Abstract

Treatment of $\mathrm{Re}_{2} \mathrm{O}_{7}$ with manganese (I) and rhenium (I) hydrido $\left\{\right.$ fac $\left.-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MH}\right\}$, alkoxo $\left\{\right.$ fac $\left.-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOR}\right\}$, methylcarbonato $\left\{\right.$ fac $\left.-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOC}(\mathrm{O}) \mathrm{OCH}_{3}\right\}$, carbonato-bridged $\left[(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}\right]_{2}\{\mu-\mathrm{OC}(\mathrm{O}) \mathrm{O}\}$ and methoxymethyl $\{$ fac-$\left.(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MCH}_{2} \mathrm{OCH}_{3}\right\}$ complexes, where, R is CH_{3} or $\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{P}-\mathrm{P}$ is dppe $\{1,2$-bis(diphenylphosphino)ethane $\}$ or dppp $\{1,3-$ bis(diphenylphosphino)propane\}, yielded the corresponding perrhenato complexes, fac $-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOReO}_{3}(\mathbf{1}, \mathrm{M}=\mathrm{Mn}, \mathrm{P}-\mathrm{P}=$ dppe; 2, $\mathrm{M}=\mathrm{Mn}, \mathrm{P}-\mathrm{P}=\mathrm{dppp;} \mathbf{3}, \mathrm{M}=\mathrm{Re}, \mathrm{P}-\mathrm{P}=\mathrm{dppe} ; \mathbf{4}, \mathrm{M}=\mathrm{Re}, \mathrm{P}-\mathrm{P}=\mathrm{dppp}$), in moderate to excellent yield. The perrhenato complexes have been characterized spectroscopically and the molecular structures of fac-(CO) $)_{3}(\mathrm{dppp}) \mathrm{MnOReO}_{3}, \mathbf{2}$ and fac$(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{ReOReO}_{3}, 4$ have been established through X-ray crystallography. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Manganese; Rhenium; Rhenium heptoxide; Perrhenato complexes; X-ray

1. Introduction

Dirhenium heptoxide was used extensively for the synthesis of numerous alkyl and arylrhenium oxides and related complexes [1]. Treatments of silanols with $\mathrm{Re}_{2} \mathrm{O}_{7}$ were reported to yield the corresponding siloxane perrhenates [2]. We have observed that $\mathrm{Re}_{2} \mathrm{O}_{7}$ reacts with a variety of metal carbonyl complexes to afford the corresponding metal carbonyl perrhenato complexes [3]. However, analogous perrhenato complexes were synthesized previously from the reaction of the corresponding metal carbonyl halides with AgReO_{4}. For example, $(\mathrm{CO})_{5} \mathrm{ReOReO}_{3}$ was synthesized from the reaction of $(\mathrm{CO})_{5} \mathrm{ReCl}$ with AgReO_{4} [4]. Here we present the reactions of $\mathrm{Re}_{2} \mathrm{O}_{7}$ with manganese(I) and rhenium(I) hydrido $\left\{f a c-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MH}\right\}$, alkoxo $\left\{f a c-(\mathrm{CO})_{3}(\mathrm{P}-\right.$

[^0]P)MOR $\}$, methylcarbonato $\left\{f a c-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MO}-\right.$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}\right\}$, carbonato-bridged $\left[(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}\right]_{2}\{\mu-$ $\mathrm{OC}(\mathrm{O}) \mathrm{O}\}$, and methoxymethyl $\left\{f a c-(\mathrm{CO})_{3}(\mathrm{P}-\right.$ P) $\left.\mathrm{MCH}_{2} \mathrm{OCH}_{3}\right\}$ complexes, where, R is CH_{3} or $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{P}-\mathrm{P}$ is 1,2-bis(diphenylphosphino)ethane (dppe) or 1,3-bis(diphenylphosphino)propane (dppp) and the X-ray structures of $\mathrm{fac}-(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{MnOReO}_{3}$, 2 and fac-(CO) $)_{3}(\mathrm{dppp}) \mathrm{ReOReO}_{3}, 4$.

2. Results and discussion

2.1. Reactions of hydrido manganese (I) and rhenium(I) complexes, fac $-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MH}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$

The reaction of fac- $(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MH}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}(2: 1$ mol ratio) in moist dichloromethane yielded the corresponding perrhenato complexes, fac-(CO) $)_{3}\left(\mathrm{P}_{-}\right.$ P) $\mathrm{MOReO}_{3}, \mathbf{1 - 4}$, in high yield (Eq. (1)):

$$
\begin{align*}
& 2 f a c(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MH}+\mathrm{Re}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \\
& \quad \rightarrow 2 f a c(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOReO}_{3}, \quad \mathbf{1}-\mathbf{4}+2 \mathrm{H}_{2} \tag{1}
\end{align*}
$$

Similar synthesis of the platinum perrhenato complex, $\left[\mathrm{Pt}_{4}(\mu-\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{ReO}_{4}\right)_{2}\right]$, from the reaction of the platinum hydrido complex, $\left[\mathrm{Pt}_{4} \mathrm{H}(\mathrm{CO})(\mu-\mathrm{CO})_{3}(\mathrm{P}-\right.$ $\left.\left.\mathrm{Ph}_{3}\right)_{4}\right] \mathrm{ReO}_{4}$, with $\mathrm{Re}_{2} \mathrm{O}_{7}$ in moist dichloromethane was reported previously [5]. The perrhenato complexes, $\mathbf{1 - 4}$, were characterized spectroscopically. The IR spectrum of each exhibits three strong $v(\mathrm{C} \equiv \mathrm{O})$'s characteristic of facial geometry. Two medium intensity bands in the region $955-900 \mathrm{~cm}^{-1}$ are attributed to the ReO vibrations of the perrhenates. Similar bands were also observed in related perrhenato complexes [4]. The ${ }^{1} \mathrm{H}$ NMR spectra are not helpful to identify these complexes because there are no diagnostic groups present in these complexes. The ${ }^{13} \mathrm{C}$-NMR spectra of the manganese perrhenato complexes, $\mathbf{1}$ and $\mathbf{2}$, did not show any wellresolved resonances due to the terminal carbonyls ($\mathrm{C} \equiv$ O)'s. However, the rhenium complexes, 3 and 4, showed well-resolved carbonyl carbon resonances. For example, the cis carbonyl carbon in $\mathbf{4}$ is observed at $\delta 193.5$ as a triplet coupled to the two cis phosphorus atoms of the dppp ligand with a coupling constant of 6 Hz ; the carbonyls trans to the corresponding phosphorus atoms are observed at $\delta 191.5$ and 191.0 as triplets coupled to two phosphorus atoms with a coupling constant of 23 Hz each.

2.2. Reactions of alkoxo manganese (I) and rhenium (I) complexes, fac-(CO$)_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOR}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$, where, R is CH_{3} or $\mathrm{CH}_{2} \mathrm{CH}_{3}$

When a mixture of the alkoxo complexes and $\mathrm{Re}_{2} \mathrm{O}_{7}$ ($1: 1 \mathrm{~mol}$ ratio) in dichloromethane was stirred, the corresponding perrhenato complexes, 1-4 were obtained in high yield. The reaction might proceed according to Eq. (2):

$$
\begin{align*}
& f a c(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOR}+\mathrm{Re}_{2} \mathrm{O}_{7} \\
& \quad \rightarrow \operatorname{fac}(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOReO}_{3}+\mathrm{ROReO}_{3} \tag{2}
\end{align*}
$$

The alkyl perrhenates, ROReO_{3}, thus formed are unstable [6]. The final products are black precipitates presumed to be lower oxides of rhenium. The black precipitates are not soluble in water or common organic solvents. Similar black precipitates were also observed during the preparation of $\mathrm{Ta}_{2}(\mathrm{OMe})_{8}\left(\mathrm{ReO}_{4}\right)_{2}$ from the reaction of $\mathrm{Ta}_{2}(\mathrm{OMe})_{10}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$ and confirmed by SEM-EDS to be a rhenium-containing compound [7].

2.3. Reactions of methylcarbonato complexes, fac-$(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOC}(\mathrm{O}) \mathrm{OCH}_{3}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$

When an equimolar mixture of a methylcarbonato complex and $\mathrm{Re}_{2} \mathrm{O}_{7}$ in dichloromethane was stirred, the corresponding perrhenato complex was obtained in high
yield (Eq. (3)):

$$
\begin{align*}
& (\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOC}(\mathrm{O}) \mathrm{OCH}_{3}+\mathrm{Re}_{2} \mathrm{O}_{7} \\
& \quad \rightarrow \operatorname{fac}(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOReO}_{3}+\mathrm{CH}_{3} \mathrm{OReO}_{3}+\mathrm{CO}_{2} \tag{3}
\end{align*}
$$

The black precipitates are presumed to be lower oxides of rhenium.

2.4. Reactions of carbonato-bridged complexes, $\left[(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}_{2}\{\mu-\mathrm{OC}(\mathrm{O}) \mathrm{O}\}\right.$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$

When an equimolar mixture of $\left[(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}\right]_{2}\{\mu-$ $\mathrm{OC}(\mathrm{O}) \mathrm{O}\}$ and $\mathrm{Re}_{2} \mathrm{O}_{7}$ in dichloromethane was stirred, the corresponding perrhenato complexes were obtained in high yield (Eq. (4)):

$$
\begin{align*}
& {\left[(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}\right]_{2}\{\mu \mathrm{OC}(\mathrm{O}) \mathrm{O}\}+\mathrm{Re}_{2} \mathrm{O}_{7}} \\
& \quad \rightarrow 2 \operatorname{fac}(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOReO}_{3}+\mathrm{CO}_{2} \tag{4}
\end{align*}
$$

We believe that first $\mathrm{Re}_{2} \mathrm{O}_{7}$ is converted to HReO_{4} by adventitious water [5]. Then HReO_{4} reacts with $\left[(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}\right]_{2}\{\mu-\mathrm{OC}(\mathrm{O}) \mathrm{O}\}$ to yield the corresponding perrhenato complexes (Eq. (5)):

$$
\begin{align*}
& {\left[(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}\right]_{2}\{\mu \mathrm{OC}(\mathrm{O}) \mathrm{O}\}+2 \mathrm{HReO}_{4}} \\
& \quad \rightarrow 2 \operatorname{fac}(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOReO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \tag{5}
\end{align*}
$$

In a separate experiment we observed that a dichloromethane solution of $\left[(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}\right]_{2}\{\mu-\mathrm{OC}(\mathrm{O}) \mathrm{O}\}$ reacted rapidly with two equivalents of HReO_{4} to yield the perrhenato complexes almost quantitatively.

2.5. Reactions of methoxymethyl complexes, fac-$(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MCH}_{2} \mathrm{OCH}_{3}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$

When an equimolar mixture of a methoxymethyl complex, fac- $(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MCH}_{2} \mathrm{OCH}_{3}$ and $\mathrm{Re}_{2} \mathrm{O}_{7}$ in dichloromethane was stirred, the corresponding perrhenato complexes were obtained in moderate to high yield. During the course of the reaction the color of the solution changed from pale-yellow to red with simultaneous precipitation of some lower oxides of rhenium. We did not attempt to study the mechanism of this reaction. It is believed that $\mathrm{Re}_{2} \mathrm{O}_{7}$ ionizes in polar solvents as $\mathrm{ReO}_{3}^{+} \mathrm{ReO}_{4}^{-}$. Therefore, it is possible that an intermediate carbene complex, $\left[f a c-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}=\right.$ $\left.\mathrm{CH}_{2}\right]^{+}\left[\mathrm{ReO}_{4}\right]^{-}$is generated in the initial stage of the reaction (Eq. (6)):

$$
\begin{align*}
& f a c(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MCH}_{2} \mathrm{OCH}_{3}+\mathrm{Re}_{2} \mathrm{O}_{7} \\
& \quad \rightarrow\left[f a c(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}=\mathrm{CH}_{2}\right]^{+}\left[\mathrm{ReO}_{4}\right]^{-} \\
& \quad+\mathrm{CH}_{3} \mathrm{OReO}_{3} \tag{6}
\end{align*}
$$

Alternatively, the carbene complexes may be formed from O-protonation reaction of the methoxymethyl complexes, fac- $(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MCH}_{2} \mathrm{OCH}_{3}$ with HReO_{4} formed in situ from the reaction of $\mathrm{Re}_{2} \mathrm{O}_{7}$ with adventitious water (Eq. (7)):

$$
\begin{align*}
& f a c(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MCH}_{2} \mathrm{OCH}_{3}+\mathrm{HReO}_{4} \\
& \quad \rightarrow\left[\operatorname{fac}(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}=\mathrm{CH}_{2}\right]^{+}\left[\mathrm{ReO}_{4}\right]^{-}+\mathrm{CH}_{3} \mathrm{OH} \tag{7}
\end{align*}
$$

Similar O-protonation of methoxymethyl complexes with acids are known. For example, the reaction of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{dppe}) \mathrm{FeCH}_{2} \mathrm{OMe}$ with HBF_{4} was reported to yield the carbene complex, $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{dppe}) \mathrm{Fe}=\right.$ $\left.\mathrm{CH}_{2}\right]^{+}\left[\mathrm{BF}_{4}\right]^{-}$[8]. It is possible that the carbene complexes decompose rapidly to afford the corresponding perrhenato complexes (Eq. (8)):

$$
\begin{align*}
& 2\left[f a c(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}=\mathrm{CH}_{2}\right]^{+}\left[\mathrm{ReO}_{4}\right]^{-} \\
& \quad \rightarrow 2\left[f a c(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOReO}_{3}+\mathrm{C}_{2} \mathrm{H}_{4}(?)\right. \tag{8}
\end{align*}
$$

Similar decomposition of $(\mathrm{CO})_{5} \mathrm{ReCH}_{2} \mathrm{I}$ was also reported to yield $\mathrm{C}_{2} \mathrm{H}_{4}$ [9]. Among the starting materials, the hydrido complexes are readily available [10]. Also the reactions of $\mathrm{Re}_{2} \mathrm{O}_{7}$ with the hydrido complexes afforded reasonably good yields of the perrhenato complexes. Therefore, the reaction noted in Eq. 1 is the preferred method of synthesis of perrhenato complexes.

Table 1
Summary of crystal data for $f a c-(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{MnOReO}_{3}(\mathbf{2})$ and $f a c$ $(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{ReOReO}_{3}(4)$

	2	4
Color and habit	Orange prisms	Colorless prisms
Crystal size (mm)	$0.18 \times 0.32 \times 0.38$	$0.15 \times 0.15 \times 0.08$
Chemical formula	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{MnO}_{7} \mathrm{P}_{2} \mathrm{Re}$	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Re}_{2}$
$a($ Å)	$9.7779(2)$	9.7675(2)
b (A)	11.8671(2)	11.9913(2)
$c(\AA)$	13.6100(2)	13.6469(2)
$\alpha\left({ }^{\circ}\right)$	95.912(1)	96.773(1)
$\beta\left({ }^{\circ}\right)$	90.387(1)	90.723(1)
$\gamma\left({ }^{\circ}\right)$	107.105(1)	107.168(1)
$V\left(\AA^{3}\right)$	1500.22(5)	1514.62(5)
Wavelength (\AA)	0.71073	0.71073
Crystal system	Triclinic	Triclinic
Space group	$P \overline{1}$	$P \overline{1}$
Z	2	2
Diffractometer	Nonius KappaCCD	Nonius KappaCCD
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)\left(\mathrm{mm}^{-1}\right)$	4.603	8.135
Scan mode	$\omega, 1^{\circ} \times 800$	$\omega, 1^{\circ} \times 800$
θ Range (${ }^{\circ}$)	1.51-27.47	1.50×30.02
Limiting indices	$\begin{aligned} & -12 \leq h \leq 12, \\ & -15 \leq k \leq 15, \\ & 0 \leq l \leq 17 \end{aligned}$	$\begin{aligned} & 13 \leq h \leq 13 \\ & -16 \leq k \leq 16, \\ & 0 \leq l \leq 19 \end{aligned}$
Absorption correction	Gaussian	Gaussian
Reflections collected	30513	34122
Reflections/ $R_{\text {int }}$	6866 (0.0611)	8801 (0.0556)
Reflections observed	6339; $I>2 \sigma(I)$	7507; $I>2 \sigma(I)$
Number of variables	371	371
R	0.0290 (0.0644) ${ }^{\text {a }}$	0.0306 (0.0726) ${ }^{\text {a }}$
$R_{\text {w }}$	0.0330 (0.0695) ${ }^{\text {a }}$	0.0397 (0.0923) ${ }^{\text {a }}$
Goodness-of-fit on F^{2}	1.082	1.051
Refinement method	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}

[^1]
2.6. X-ray crystal structures of fac-(CO) ${ }_{3}$ (dppp)MnOReO_{3} (2) and $\mathrm{fac}-(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{ReOReO}_{3}$ (4)

Crystal data for $\mathbf{2}$ and $\mathbf{4}$ were determined under the conditions summarized in Table 1. The molecular plots for $\mathbf{2}$ and $\mathbf{4}$ are provided in Fig. 1. Selected distances and angles for $\mathbf{2}$ and $\mathbf{4}$ are provided in Table 2. As expected, the central metal atom of $\mathbf{2}$ or $\mathbf{4}$ are octahedrally coordinated to three terminal carbonyl ligands in a facial arrangement, a bidentate dppp, and a monodentate perrhenate anion. The $\mathrm{Mn}-\mathrm{OReO}_{3}$ bond in 2 is $2.066(2) \AA$ which is slightly longer than the corresponding distances of $2.020-2.043(2) \AA$ reported for manganese carboxylato complexes [11]. To the best of our knowledge, no manganese(I) perrhenato complex was characterized previously by X-ray diffraction. The ReOReO_{3} bond distance of 2.175 (3) \AA in $\mathbf{4}$ is comparable to the corresponding distances of 2.152(4) [12] and $2.207(3) \AA$ [13] reported for analogous rhenium-perrhenato complexes. Similarly, the $\mathrm{ReO}-\mathrm{ReO}_{3}$ bond distance of 1.744(3) \AA in $\mathbf{4}$ is comparable to the corresponding distances of 1.739(4) [12] and 1.754(3) \AA [13] reported for rhenium-perrhenato complexes noted above. The $\mathrm{Re}-\mathrm{O}-\mathrm{Re}$ angle of $153.1(2)^{\circ}$ observed in $\mathbf{4}$ is comparable to the corresponding angles of $135-$ 164° reported for related rhenium-perrhenato complexes [14]. The Mn-CO (trans) distance of $1.782(3) \AA$ and $\mathrm{Re}-\mathrm{CO}$ (trans) distance of 1.894(4) \AA are shorter than their corresponding $\mathrm{M}-\mathrm{CO}$ (cis) distances. Also the $\mathrm{MnC}-\mathrm{O}$ (trans) distance of $1.143(4) \AA$ and the $\mathrm{ReC}-\mathrm{O}$ (trans) distance of $1.151(5) \AA$ are longer than the corresponding M-CO (cis) distances. Similar MCO (trans) bond shortening and MC-O (trans) bond lengthening were observed in analogous rhenium-perrhenato complexes $[12,13]$. This is attributed to low trans directing effect of the ReO_{4} ligand.

Fig. 1. The X-ray crystal structure of $\mathbf{2}$ or $\mathbf{4}$.

Table 2
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for fac-(CO) $)_{3}(\mathrm{dppp}) \mathrm{M}-$ nOReO_{3} (2) and $f a c-(\mathrm{CO})_{3}(\mathrm{dppp}) \mathrm{ReOReO}_{3}$ (4)

2	4		
Bond lengths			
$\mathrm{Mn}-\mathrm{C}(1)$	1.782(3)	$\mathrm{Re}(1)-\mathrm{C}(1)$	1.894(4)
$\mathrm{Mn}-\mathrm{C}(2)$	1.832(4)	$\mathrm{Re}(1)-\mathrm{C}(2)$	$1.956(4)$
$\mathrm{Mn}-\mathrm{C}(3)$	1.823(4)	$\mathrm{Re}(1)-\mathrm{C}(3)$	$1.963(5)$
$\mathrm{Mn}-\mathrm{O}(4)$	2.066(2)	$\mathrm{Re}(1)-\mathrm{O}(4)$	2.175(3)
$\mathrm{Mn}-\mathrm{P}(1)$	$2.3712(9)$	$\operatorname{Re}(1)-\mathrm{P}(1)$	2.4873(9)
$\mathrm{Mn}-\mathrm{P}(2)$	$2.3499(9)$	$\mathrm{Re}(1)-\mathrm{P}(2)$	$2.4653(10)$
$\mathrm{C}(1)-\mathrm{O}(1)$	1.143(4)	$\mathrm{C}(1)-\mathrm{O}(1)$	1.151(5)
$\mathrm{C}(2)-\mathrm{O}(2)$	1.134(4)	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.138(5)$
$\mathrm{C}(3)-\mathrm{O}(3)$	1.134(5)	$\mathrm{C}(3)-\mathrm{O}(3)$	1.122(6)
$\mathrm{Re}-\mathrm{O}(4)$	1.739(2)	$\mathrm{Re}(2)-\mathrm{O}(4)$	1.744(3)
$\mathrm{Re}-\mathrm{O}(5)$	1.683(4)	$\mathrm{Re}(2)-\mathrm{O}(5)$	1.677(6)
$\mathrm{Re}-\mathrm{O}(6)$	1.686 (3)	$\mathrm{Re}(2)-\mathrm{O}(6)$	1.683(4)
$\mathrm{Re}-\mathrm{O}(7)$	1.694(4)	$\mathrm{Re}(2)-\mathrm{O}(7)$	$1.699(5)$
$\mathrm{P}(1)-\mathrm{C}(4)$	1.829(3)	$\mathrm{P}(1)-\mathrm{C}(4)$	1.829(4)
$\mathrm{P}(1)-\mathrm{C}(7)$	1.827(3)	$\mathrm{P}(1)-\mathrm{C}(7)$	1.831(4)
$\mathrm{P}(1)-\mathrm{C}(13)$	1.817(3)	$\mathrm{P}(1)-\mathrm{C}(13)$	1.819(4)
$\mathrm{P}(2)-\mathrm{C}(6)$	1.830(3)	$\mathrm{P}(2)-\mathrm{C}(6)$	1.833(4)
$\mathrm{P}(2)-\mathrm{C}(19)$	1.820 (3)	$\mathrm{P}(2)-\mathrm{C}(19)$	1.819(4)
$\mathrm{P}(2)-\mathrm{C}(25)$	1.833(3)	$\mathrm{P}(2)-\mathrm{C}(25)$	1.828(4)
Bond angles			
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{C}(2)$	88.6(2)	$\mathrm{C}(1)-\operatorname{Re}(1)-\mathrm{C}(2)$	89.1(2)
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{C}(3)$	88.8(2)	$\mathrm{C}(1)-\mathrm{Re}(1)-\mathrm{C}(3)$	89.5(2)
$\mathrm{C}(2)-\mathrm{Mn}-\mathrm{C}(3)$	89.4(2)	$\mathrm{C}(2)-\operatorname{Re}(1)-\mathrm{C}(3)$	89.7(2)
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{O}(4)$	176.92(13)	$\mathrm{C}(1)-\mathrm{Re}(1)-\mathrm{O}(4)$	178.3(2)
$\mathrm{C}(2)-\mathrm{Mn}-\mathrm{O}(4)$	89.26(14)	$\mathrm{C}(2)-\mathrm{Re}(1)-\mathrm{O}(4)$	90.5(2)
$\mathrm{C}(3)-\mathrm{Mn}-\mathrm{O}(4)$	93.4(2)	$\mathrm{C}(3)-\mathrm{Re}(1)-\mathrm{O}(4)$	92.1(2)
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{P}(2)$	92.66(11)	$\mathrm{C}(1)-\mathrm{Re}(1)-\mathrm{P}(2)$	93.91(13)
$\mathrm{C}(2)-\mathrm{Mn}-\mathrm{P}(2)$	91.59(12)	$\mathrm{C}(2)-\mathrm{Re}(1)-\mathrm{P}(2)$	91.71(14)
$\mathrm{C}(3)-\mathrm{Mn}-\mathrm{P}(2)$	178.26(12)	$\mathrm{C}(3)-\mathrm{Re}(1)-\mathrm{P}(2)$	176.32(14)
$\mathrm{O}(4)-\mathrm{Mn}-\mathrm{P}(2)$	85.15(8)	$\mathrm{O}(4)-\mathrm{Re}(1)-\mathrm{P}(2)$	84.45(9)
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{P}(1)$	98.00(11)	$\mathrm{C}(1)-\mathrm{Re}(1)-\mathrm{P}(1)$	97.69(13)
$\mathrm{C}(2)-\mathrm{Mn}-\mathrm{P}(1)$	173.21(12)	$\mathrm{C}(2)-\mathrm{Re}(1)-\mathrm{P}(1)$	173.26(14)
$\mathrm{C}(3)-\mathrm{Mn}-\mathrm{P}(1)$	89.40(12)	$\mathrm{C}(3)-\mathrm{Re}(1)-\mathrm{P}(1)$	90.43(14)
$\mathrm{O}(4)-\mathrm{Mn}-\mathrm{P}(1)$	84.15(7)	$\mathrm{O}(4)-\mathrm{Re}(1)-\mathrm{P}(1)$	82.74(9)
$\mathrm{P}(2)-\mathrm{Mn}-\mathrm{P}(1)$	89.47(3)	$\mathrm{P}(2)-\operatorname{Re}(1)-\mathrm{P}(1)$	87.78(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Mn}$	176.0(3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Re}(1)$	178.3(4)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Mn}$	176.6(4)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Re}(1)$	178.4(4)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Mn}$	175.4(4)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Re}(1)$	177.0(5)
$\mathrm{O}(5)-\mathrm{Re}-\mathrm{O}(6)$	109.9(2)	$\mathrm{O}(5)-\mathrm{Re}(2)-\mathrm{O}(6)$	110.7(3)
$\mathrm{O}(5)-\mathrm{Re}-\mathrm{O}(7)$	107.6(3)	$\mathrm{O}(5)-\mathrm{Re}(2)-\mathrm{O}(7)$	106.9(4)
$\mathrm{O}(6)-\mathrm{Re}-\mathrm{O}(7)$	110.5(2)	$\mathrm{O}(6)-\mathrm{Re}(2)-\mathrm{O}(7)$	110.1(3)
$\mathrm{O}(5)-\mathrm{Re}-\mathrm{O}(4)$	110.1(2)	$\mathrm{O}(5)-\mathrm{Re}(2)-\mathrm{O}(4)$	109.8(3)
$\mathrm{O}(6)-\mathrm{Re}-\mathrm{O}(4)$	110.2(2)	$\mathrm{O}(6)-\mathrm{Re}(2)-\mathrm{O}(4)$	110.4(2)
$\mathrm{O}(7)-\mathrm{Re}-\mathrm{O}(4)$	108.6(2)	$\mathrm{O}(7)-\mathrm{Re}(2)-\mathrm{O}(4)$	108.8(2)
$\mathrm{Re}-\mathrm{O}(4)-\mathrm{Mn}$	154.5(2)	$\mathrm{Re}(2)-\mathrm{O}(4)-\mathrm{Re}(1)$	153.1(2)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(7)$	101.79(14)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(7)$	102.2(2)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(4)$	105.8(2)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(4)$	106.1(2)
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(4)$	101.4(2)	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(4)$	102.1(2)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{Mn}$	118.39(10)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{Re}(1)$	117.57(12)
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{Mn}$	114.71(11)	$\mathrm{C}(7)-\mathrm{P}(1)-\operatorname{Re}(1)$	114.75 (13)
$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{Mn}$	112.82(11)	$\mathrm{C}(4)-\mathrm{P}(1)-\mathrm{Re}(1)$	112.45(13)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{P}(1)$	115.9(2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{P}(1)$	116.2(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	114.3(3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	114.5(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{P}(2)$	112.2(2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{P}(2)$	112.6(3)
$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(6)$	104.7(2)	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(6)$	105.2(2)
$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(25)$	100.9(2)	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(25)$	101.5(2)
$\mathrm{C}(6)-\mathrm{P}(2)-\mathrm{C}(25)$	101.1(2)	$\mathrm{C}(6)-\mathrm{P}(2)-\mathrm{C}(25)$	101.4(2)
$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{Mn}$	113.10(12)	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{Re}(1)$	113.71(13)
$\mathrm{C}(6)-\mathrm{P}(2)-\mathrm{Mn}$	112.79(11)	$\mathrm{C}(6)-\mathrm{P}(2)-\mathrm{Re}(1)$	112.29(13)
$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{Mn}$	122.15(12)	$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{Re}(1)$	120.92(14)

Table 2 (Continued)

$\mathbf{2}$		$\mathbf{4}$	
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{P}(1)$	$120.0(2)$	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{P}(1)$	$119.7(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{P}(1)$	$121.6(3)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{P}(1)$	$121.7(3)$
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{P}(1)$	$122.7(2)$	$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{P}(1)$	$122.9(3)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{P}(1)$	$118.7(2)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{P}(1)$	$117.9(3)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{P}(2)$	$118.4(3)$	$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{P}(2)$	$118.5(4)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{P}(2)$	$122.1(3)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{P}(2)$	$122.4(3)$
$\mathrm{C}(30)-\mathrm{C}(25)-\mathrm{P}(2)$	$123.0(3)$	$\mathrm{C}(30)-\mathrm{C}(25)-\mathrm{P}(2)$	$122.5(3)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{P}(2)$	$118.3(3)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{P}(2)$	$118.9(3)$

3. Conclusion

Transtion-metal (carbonyl) perrhenato complexes can be easily synthesized from the reaction of $\mathrm{Re}_{2} \mathrm{O}_{7}$ with the corresponding transition-metal (carbonyl) hydrido, alkoxo, alkylcarbonato, carbonato-bridged, or alkoxymethyl complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

4. Experimental

All manipulations were carried out under a nitrogen atmosphere and the solvents were dried prior to use. Reagent grade chemicals were used without further purification. $\mathrm{Mn}_{2}(\mathrm{CO})_{10}, \mathrm{Re}_{2}(\mathrm{CO})_{10}, \mathrm{Re}_{2} \mathrm{O}_{7}, \mathrm{HReO}_{4}$, dppe, and dppp were obtained from commercial sources. The starting materials, fac- $(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MH}$ [10], fac-(CO) $)_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOR} 11 \mathrm{c}[15]$, $f a c-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MO}-$ $\mathrm{C}(\mathrm{O}) \mathrm{OR} 11 \mathrm{c},\left[(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}\right]_{2}\{\mu-\mathrm{OC}(\mathrm{O}) \mathrm{O}\}[16]$, and fac- $(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MCH}_{2} \mathrm{OCH}_{3}$ [17] were synthesized according to literature procedures.
IR spectra were recorded on a Perkin-Elmer 1600 series FTIR instrument. NMR spectra were recorded on a Bruker AC $250\left(250.133 \mathrm{MHz},{ }^{1} \mathrm{H} ; 62.896 \mathrm{MHz},{ }^{13} \mathrm{C}\right)$ spectrometer. Melting points were recorded on a MelTemp apparatus and are uncorrected. Microanalyses were conducted by Quantitative Technologies Inc.

4.1. Reactions of hydrido manganese(I) and rhenium(I) complexes, fac- $(\mathrm{CO})_{3}(P-P) M H$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$

In a typical experiment a mixture of about 5 mmol of fac- $(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MH}$ and 2.5 mmol of $\mathrm{Re}_{2} \mathrm{O}_{7}$ in 20 ml of moist $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was allowed to stir for 30 min at ambient temperature. The progress of the reaction was monitored with IR. The solvent was removed on a rotary evaporator. The residue was recrystallized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane at $-5{ }^{\circ} \mathrm{C}$. Filtration afforded colorless to paleyellow crystals of perrhenato complexes, $f a c-(\mathrm{CO})_{3}(\mathrm{P}-$ $\mathrm{P}) \mathrm{MOReO}_{3}(\mathbf{1}, \mathrm{M}=\mathrm{Mn}, \mathrm{P}-\mathrm{P}=\mathrm{dppe} ; \mathbf{2}, \mathrm{M}=\mathrm{Mn}, \mathrm{P}-$ $\mathrm{P}=\mathrm{dppp} ; \mathbf{3}, \mathrm{M}=\mathrm{Re}, \mathrm{P}-\mathrm{P}=\mathrm{dppe} ; \mathbf{4}, \mathrm{M}=\mathrm{Re}, \mathrm{P}-\mathrm{P}=$ dppp). Data for 1: yield, 72%; m.p. $195-197{ }^{\circ} \mathrm{C}$ with decomposition. IR ($\left.\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO}) 2034 \mathrm{~s}$, 1966s, 1930s; $v(\mathrm{ReO}) \quad 931 \mathrm{~m}, ~ 900 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR} \quad(\delta$,
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 7.68-7.18 (m, 20H), 3.0-2.68(m, 4H). ${ }^{13} \mathrm{C}-$ NMR ($\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 214.8 (s, br, CO), 134.0-129.7 (m, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 25.8\left(\mathrm{t}, J 18 \mathrm{~Hz},-\mathrm{PCH}_{2}\right)$ Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{MnO}_{7} \mathrm{P}_{2} \mathrm{Re}: \mathrm{C}, 44.2 ; \mathrm{H}, 3.1$. Found: C, $44.4 ; \mathrm{H}$, 3.2%. Data for 2: yield, 76%; m.p. $185-186{ }^{\circ} \mathrm{C}$ with decomposition. IR ($\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): v(CO) $2038 \mathrm{~s}, 1972$ $\mathrm{s}, 1925 \mathrm{~s} ; v(\mathrm{ReO}) 928 \mathrm{~m}, 910 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $7.56-7.34(\mathrm{~m}, 20 \mathrm{H}), 2.52-1.54(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 215.2 (s, br, CO), 135.6-129.4 (m, $\mathrm{C}_{6} \mathrm{H}_{5}$), 25.1(t, J $12 \mathrm{~Hz},-\mathrm{PCH}_{2}$), 18.9 (s, $\mathrm{H}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2}$). Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{MnO}_{7} \mathrm{P}_{2} \mathrm{Re}: \mathrm{C}, 44.9$; $\mathrm{H}, 3.3$. Found: C, 44.6; H, 3.3\%. Data for 3: yield, 87%; m.p. $190-193{ }^{\circ} \mathrm{C}$ with decomposition. IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v(\mathrm{CO}) 2038 \mathrm{~s}$, $1962 \mathrm{~s}, \quad 1920 \mathrm{~s} ; \quad v(\mathrm{ReO}) 933 \mathrm{~m}, ~ 910 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 7.79-7.24(m, 20H), 3.08-2.62(m, 4H). ${ }^{13} \mathrm{C}-$ NMR ($\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $193.0(\mathrm{dd}, 9 \mathrm{~Hz}, 60 \mathrm{~Hz}, 2 \mathrm{CO}), 191.2(\mathrm{t}$, $8 \mathrm{~Hz}, \mathrm{CO}), 132.7-128.1\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 26.6\left(\mathrm{~m},-\mathrm{PCH}_{2}\right)$. Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Re}_{2}$: C, 37.9; H, 2.6. Found: C, 37.9 ; H, 2.6%. Data for 4: yield, 88%; m.p. $250-$ $252{ }^{\circ} \mathrm{C}$ with decomposition. IR $\left(\mathrm{cm}^{-1}, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v(\mathrm{CO}) 2041 \mathrm{~s}, 1965 \mathrm{~s}, 1915 \mathrm{~s} ; v(\mathrm{ReO}) 955 \mathrm{~m}, 935 \mathrm{~m} .{ }^{1} \mathrm{H}-$ NMR $\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.55-7.35(\mathrm{~m}, 20 \mathrm{H}), 2.70-1.74(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 193.5(\mathrm{t}, 6 \mathrm{~Hz}, \mathrm{CO}), 191.5$ (t, $23 \mathrm{~Hz}, \mathrm{CO}$), 191.0 (t, $23 \mathrm{~Hz}, \mathrm{CO}$), 134.9-129.6 (m, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 25.2\left(\mathrm{t}, J 13 \mathrm{~Hz},-\mathrm{PCH}_{2}\right), 19.6\left(\mathrm{~s}, \mathrm{H}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2}\right)$. Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Re}_{2}$: C, 38.6; H, 2.8. Found: C, 38.6 ; H, 2.8\%.

4.2. Reactions of alkoxo manganese (I) and rhenium (I) complexes, fac-(CO$)_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOR}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$, where, R is CH_{3} or $\mathrm{CH}_{2} \mathrm{CH}_{3}$

In a typical experiment a mixture of about 2 mmol of fac- $(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOCH}_{3}$ and 2 mmol of $\mathrm{Re}_{2} \mathrm{O}_{7}$ in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was allowed to stir for 30 min at ambient temperature. The progress of the reaction was monitored with IR. During this period the color of the solution changed from yellow (alkoxo manganese complexes) or colorless (alkoxo rhenium complexes) to dark red and black precipitates were observed. The solvent was removed on a rotary evaporator and the residue was extracted with 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was evaporated to dryness and the residue was recrystallized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane at $-5{ }^{\circ} \mathrm{C}$. Filtration afforded colorless to pale-yellow crystals of the perrhenato complexes, fac- $(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOReO}_{3}, \mathbf{1}-\mathbf{4}$, in $81-85 \%$ yield.

4.3. Reactions of methylcarbonato complexes, fac-$(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOC}(\mathrm{O}) \mathrm{OCH}_{3}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$

In a typical experiment a mixture of about 2 mmol of fac- $(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOC}(\mathrm{O}) \mathrm{OCH}_{3}$ and 2 mmol of $\mathrm{Re}_{2} \mathrm{O}_{7}$ in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 30 min . The progress of the reaction was monitored with IR. During the course of the reaction the color of the solution changed from yellow or colorless to red and
black precipitates were observed. The solvent was removed on a rotary evaporator. The residue was recrystallized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane at $-5{ }^{\circ} \mathrm{C}$. Filtration afforded colorless to pale-yellow crystals of the perrhenato complexes, $f a c-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOReO}_{3}, \mathbf{1}-\mathbf{4}$, in $78-83 \%$ yield.

4.4. Reactions of carbonato-bridged complexes, $\left[(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{M}_{2}\{\mu-\mathrm{OC}(\mathrm{O}) \mathrm{O}\}\right.$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$

In a typical experiment an equimolar mixture of $\mathrm{Re}_{2} \mathrm{O}_{7}$ and $\left[(\mathrm{CO})_{3}(\mathrm{dppe}) \mathrm{Mn}\right]_{2}\{\mu-\mathrm{OC}(\mathrm{O}) \mathrm{O}\}, \quad\left[(\mathrm{CO})_{3^{-}}\right.$ $(\mathrm{dppp}) \mathrm{Mn}]_{2}\{\mu-\mathrm{OC}(\mathrm{O}) \mathrm{O}\}$, or $\left[(\mathrm{CO})_{3}(\mathrm{dppe}) \mathrm{Re}\right]_{2}\{\mu-$ $\mathrm{OC}(\mathrm{O}) \mathrm{O}\}$ in 10 ml of moist $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was allowed to stir at ambient temperature for 30 min . The progress of the reaction was monitored with IR. The solvent was removed on a rotary evaporator. The residue was recrystallized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane at $-5{ }^{\circ} \mathrm{C}$. Filtration afforded colorless to pale-yellow crystals of the perrhenato complexes, $f a c-(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MOReO}_{3}, \mathbf{1}-\mathbf{3}$, in $80-85 \%$ yield.

4.5. Reactions of methoxymethyl complexes, fac-$(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MCH}_{2} \mathrm{OCH}_{3}$ with $\mathrm{Re}_{2} \mathrm{O}_{7}$

In a typical experiment a mixture of about 2 mmol of fac- $(\mathrm{CO})_{3}(\mathrm{P}-\mathrm{P}) \mathrm{MCH}_{2} \mathrm{OCH}_{3}$ and 2 mmol of $\mathrm{Re}_{2} \mathrm{O}_{7}$ in 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 30 min . The progress of the reaction was monitored with IR. A black precipitate was also observed in this reaction. The solvent was removed on a rotary evaporator. The residue was recrystallized in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane at $5{ }^{\circ} \mathrm{C}$. Filtration afforded colorless to pale-yellow crystals of the perrhenato complexes, fac- $(\mathrm{CO})_{3}\left(\mathrm{P}_{-}\right.$ P)MOReO $3, \mathbf{1}-\mathbf{4}$, in $69-76 \%$ yield.

4.6. X-ray crystal structure of fac$(\mathrm{CO})_{3}(d p p p) \mathrm{MnOReO}_{3}$ (2)

Crystals of 2 were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane on cooling at $-5{ }^{\circ} \mathrm{C}$. Data were collected on a Nonius KappaCCD diffractometer and corrected for Lorentzpolarization and absorption effects. The structure was direct methods and refined by full-matrix least-squares on F^{2} using shelxtl (version 5.04). The non-hydrogen atoms were refined anisotropically and the hydrogens were allowed to ride on their respective carbons. The hydrogens were assigned isotropic displacement coefficients $U(\mathrm{H})=1.2 U(\mathrm{C})$ and an extinction parameter was included in the refinements. Similar methods were used for 4 , which is isomorphous with 2.

5. Supplementary material

The following crystal structures have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 162600 for compound 2 and CCDC 162601 for compound 4. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; email: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

References

[1] (a) W.A. Herrmann, F.E. Kühn, Acc. Chem. Res. 30 (1997) 169; (b) C.C. Romläo, F.E. Kühn, W.A. Herrmann, Chem. Rev. 97 (1997) 3197 ;
(c) W.A. Herrmann, W.A. Wojtczak, G.R.J. Artus, F.E. Kühn, M.R. Mattner, Inorg. Chem. 36 (1997) 465;
(d) W.A. Herrmann, P.W. Roesky, F.E. Kühn, W. Scherer, M. Kleine, Angew. Chem. Int. Ed. Engl. 32 (1993) 1714;
(e) P. Kiprof, W.A. Herrmann, F.E. Kühn, W. Scherer, M. Kleine, M. Elison, K. Rypdal, H.V. Volden, S. Gundersen, A. Haaland, Bull. Soc. Chim. Fr. 129 (1992) 655;
(f) P.G. Edwards, J. Jokela, A. Lehtonen, R. Sillanpää, J. Chem. Soc. Dalton Trans. (1998) 3287;
(g) W.A. Herrmann, P.W. Roesky, F.E. Kühn, M. Elison, G. Artus, W. Scherer, C.C. Romäo, A. Lopes, J.-M. Basset, Inorg. Chem. 34 (1995) 4701;
(h) W.A. Herrmann, W.R. Thiel, F.E. Kühn, R.W. Fisher, M. Kleine, E. Herdtweck, W. Scherer, Inorg. Chem. 32 (1993) 5188.
[2] (a) H.W. Roesky, A. Mazzah, D. Hesse, M. Noltemeyer, Chem. Ber. 124 (1991) 519;
(b) N. Winkhofer, H.W. Roesky, M. Noltemeyer, W.T. Robinson, Angew. Chem. Int. Ed. Engl. 31 (1992) 599.
[3] D. Brown, L.P. Brown, S.K. Mandal, 216th ACS National Meeting, Boston, Massachusetts, 23-27 August, 1998, Abstr. No. 100.
[4] J. Heidrich, D. Loderer, W. Beck, J. Organomet. Chem. 312 (1986) 329.
[5] L. Hao, J.J. Vittal, R.J. Puddephatt, L. Manojlovic-Muir, K.W. Muir, J. Chem. Soc. Chem. Commun. (1995) 2381.
[6] P. Edwards, G. Wilkinson, J. Chem. Soc. Dalton Trans. (1984) 2695.
[7] G.A. Seisenbaeva, V.G. Kessler, Inorg. Chem. Commun. 4 (2001) 534.
[8] C. Roger, C. Lapinte, J. Chem. Soc. Chem. Commun. (1989) 1598.
[9] (a) K.C. Brinkman, G.D. Vaughn, J.A. Gladysz, Organometallics 1 (1982) 1056;
(b) K.C. Brinkman, Ph.D. thesis, University of Utah, 1984.
[10] (a) L.S. O'Keiffe, A.C. Mitchell, T.M. Becker, D.M. Ho, S.K. Mandal, J. Organomet. Chem. 613 (2000) 13;
(b) S.K. Mandal, J. Feldman, M. Orchin, J. Coord. Chem. 33 (1994) 219.
[11] (a) W.A. Herrmann, I. Schweizer, P.S. Skell, M. Ziegler, K. Weidenhammer, B. Nuber, Chem. Ber. 112 (1979) 2423;
(b) F.A. Cotton, D.J. Darensbourg, B.W.S. Colthammer, Inorg. Chem. 20 (1981) 1287;
(c) S.K. Mandal, D.M. Ho, M. Orchin, Organometallics 12 (1993) 1714;
(d) M.T. Williams, C. McEachin, T.M. Becker, D.M. Ho, S.K. Mandal, J. Organomet. Chem. 599 (2000) 308.
[12] G.A. Ardizzoia, S. Cenini, G. D'Alfonso, G. La Monica, N. Masciocchi, M. Moret, Gazz. Chim. Ital. 122 (1992) 515.
[13] L. Manojlovic-Muir, K.W. Muir, M.-A. Rennie, J. Xiao, R.J. Puddephatt, J. Organomet. Chem. 462 (1993) 235.
[14] See reference [12] above and other references cited therein.
[15] S.K. Mandal, D.M. Ho, M. Orchin, Inorg. Chem. 30 (1991) 2244.
[16] (a) S.K. Mandal, D.M. Ho, G.Q. Li, M. Orchin, Polyhedron 17 (1998) 607;
(b) G.Q. Li, R.M. Burns, S.K. Mandal, J.K. Bauer, M. Orchin, Polyhedron 17 (1998) 607.
[17] S.K. Mandal, J.A. Krause, M. Orchin, J. Organomet. Chem. 467 (1994) 113.

[^0]: * Corresponding author

 E-mail address: smandal@morgan.edu (S.K. Mandal).

[^1]: ${ }^{\text {a }}$ Definitions of $\quad R \quad$ and $\quad R_{\mathrm{w}} ; \quad R=\Sigma\left(| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \Sigma\left(\left|F_{0}\right|\right.$, $R_{\mathrm{w}}=\left[\Sigma\left(w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{0}^{2}\right)\right]^{1 / 2}\right.$.

